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SUMMARY

Partial Least Squares Regression (PLSR) is a linear regression technique developed to deal

with high-dimensional regressors and one or several response variables. In this paper we in-

troduce robustified versions of the SIMPLS algorithm being the leading PLSR algorithm be-

cause of its speed and efficiency. Because SIMPLS is based on the empirical cross-covariance

matrix between the response variables and the regressors and on linear least squares re-

gression, the results are affected by abnormal observations in the data set. Two robust

methods, RSIMCD and RSIMPLS, are constructed from a robust covariance matrix for

high-dimensional data and robust linear regression. We introduce robust RMSECV and

RMSEP values for model calibration and model validation. Diagnostic plots are constructed

to visualize and classify the outliers. Several simulation results and the analysis of real data

sets show the effectiveness and the robustness of the new approaches. Because RSIMPLS is

roughly twice as fast as RSIMCD, it stands out as the overall best method.
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1 Introduction

The PLS (NIPALS) regression technique was originally developed for econometrics by Wold

([29], [30]), but has become a very popular algorithm in other fields such as chemometrics,

social science, food industry, etc. It is used to model the linear relation between a set of

regressors and a set of response variables, which can then be used to predict the value of the

response variables for a new sample. A typical example is multivariate calibration where the

x-variables are spectra and the y-variables are the concentrations of certain constituents.

Throughout the paper we will print column vectors in bold and the transpose of a vector

v or a matrix V as v′ or V ′. Sometimes, the dimension of a matrix will be denoted using

a subscript, e.g. Xn,p stands for a (n × p) dimensional matrix. We apply the notation

(x1, . . . , xn)′ = Xn,p for the regressors and (y1, . . . , yn)′ = Yn,q for the response variables.

The merged data set (Xn,p, Yn,q) will be denoted as Zn,m, with m = p + q.

The linear regression model we consider is:

yi = β0 + B′q,pxi + ei, (1)

where the error terms ei satisfy E(ei) = 0 and Cov(ei) = Σe of size q. The unknown

q-dimensional intercept is denoted as β0 = (β01, . . . , β0q)
′ and Bp,q represents the unknown

slope matrix. Typically in chemometrics, the number of observations n is very small (some

tens), whereas the number of regressors is very numerous (some hundreds, thousands). The

number of response variables q is in general limited to at most five.

Because multicollinearity is present, the classical multiple linear regression (MLR) esti-

mates have too large of a variance, hence biased estimation procedures, such as Principal

Component Regression (PCR) and Partial Least Squares Regression (PLSR) [13], are then

performed. In this paper, we will focus on PLSR. We will use the notation PLS1 when there

is only one response variable and the notation PLS2 otherwise.

It is well known that the popular algorithms for PLSR (NIPALS [29] and SIMPLS [2]) are

very sensitive to outliers in the data set. This will also be clearly shown in our simulation

study in Section 6. In this paper, we introduce several robust methods for PLSR which

are resistant to outlying observations. Some robustified versions of the PLS1 and PLS2

algorithms have already been proposed in the past. A first algorithm [28] has been developed

by replacing the different univariate regression steps in the PLS2 algorithm by some robust

alternatives. Iteratively reweighted algorithms have been obtained in [1] and [16]. These

algorithms are only valid for a one-dimensional response variable and they are not resistant

to leverage points. In [5], a robust PLS1 method is obtained by robustifying the sample

covariance matrix of the x-variables and the sample cross-covariance matrix between the

x- and y-variables. For this, the highly robust Stahel-Donoho estimator ([23],[3]) is used,

but unfortunately it can not be applied to high-dimensional regressors (n ¿ p) because
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the subsampling scheme used to compute the estimator starts by drawing subsets of size

p + 2. Moreover the method can not be extended to PLS2. Recently, a robust method for

PCR which also applies to high-dimensional x-variables and multiple y-variables has been

introduced in [9].

In this paper we present several robustifications of the SIMPLS algorithm. SIMPLS is

very popular because it is faster than PLS1 and PLS2 as implemented using NIPALS, and

the results are easier to interpret. Moreover, if there is only one response variable (q = 1),

SIMPLS and PLS1 yield the same results. An outline of the SIMPLS algorithm is presented

in Section 2. We recall that SIMPLS depends on the sample cross-covariance matrix between

the x- and y-variables, and on linear least squares regression. In Section 3, we introduce

several robust methods which are obtained by using a robust covariance matrix for high-

dimensional data sets ([8]), and a robust regression method. The proposed algorithms are

fast compared to previous developed robust methods and they can handle cases where n ¿ p

and q ≥ 1. Section 4 discusses the selection of the number of components and the model

validation. In Section 5 we introduce several diagnostic plots which can help us to identify

the outliers and classify them in several types. The robustness of the proposed algorithms

is demonstrated in Section 6 with several simulations. In Section 7 we apply one of the new

methods on a real data set. We finish with some conclusions in Section 8.

2 The SIMPLS algorithm

The SIMPLS method assumes that the x- and y-variables are related through a bilinear

model:

xi = x̄ + Pp,kt̃i + gi (2)

yi = ȳ +A′
q,kt̃i + fi. (3)

In this model, x̄ and ȳ denote the mean of the x- and the y-variables. The t̃i are called the

scores which are k-dimensional, with k ¿ p, whereas Pp,k is the matrix of x-loadings. The

residuals of each equation are represented by the gi and fi respectively. The matrix Ak,q

represents the slope matrix in the regression of yi on t̃i. Note that in the literature regarding

PLS, the matrix Ak,q is usually denoted as Q′
k,q and the columns of Qq,k by the y-loadings

qa. We prefer to use another notation because qa will be used for the PLS weight vector,

see (4).

The bilinear structure (2) and (3) implies a two-steps algorithm. After mean-centering

the data, SIMPLS will first construct k latent variables T̃n,k = (t̃1, . . . , t̃n)′ and secondly, the

responses will be regressed onto these k variables. We will refer to the columns of T̃n,k as

the components.
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Consider first the construction of the components. In contrast with PCR, the k com-

ponents are not solely determined based on the x-variables. They are obtained as a linear

combination of the x-variables which have maximum covariance with a certain linear com-

bination of the y-variables. More precisely, let X̃n,p and Ỹn,q denote the mean-centered data

matrices, with x̃i = xi − x̄ and ỹi = yi − ȳ. The normalized PLS weight vectors ra and qa

(‖ra‖ = ‖qa‖ = 1) are then defined as the vectors that maximize for each a = 1, . . . , k

cov(Ỹn,qqa, X̃n,pra) = q′a
Ỹ ′

q,nX̃n,p

n− 1
ra = q′aSyxra (4)

where S ′yx = Sxy =
X̃′

p,nỸn,q

n−1
is the empirical cross-covariance matrix between the x- and

y-variables. The elements of the scores t̃i are then defined as linear combinations of the

mean-centered data: t̃ia = x̃′ira, or equivalently T̃n,k = X̃n,pRp,k with Rp,k = (r1, . . . , rk).

The maximization problem of (4) has one straightforward solution: r1 and q1 are the first

left and right singular vectors of Sxy. This implies that q1 is the dominant eigenvector of

SyxSxy and r1 = Sxyq1. To obtain more than one solution, the components X̃rj are required

to be orthogonal:

r′jX̃
′X̃ra =

n∑
i=1

t̃ij t̃ia = 0, a > j. (5)

To satisfy this condition we first introduce the x-loading pj that describes the linear relation

between the x-variables and the jth component X̃rj. It is computed as

pj = (r′jX̃
′X̃rj)

−1X̃ ′X̃rj

= (r′jSxrj)
−1Sxrj (6)

with Sx the empirical covariance matrix of the x-variables. This definition implies that (5)

is fulfilled when p′jra = 0 for a > j. The PLS weight vector ra thus has to be orthogonal

to all previous x-loadings Pa−1 = [p1, . . . , pa−1]. Consequently, ra and qa are computed

as the first left and right singular vectors of Sxy projected on a subspace orthogonal to

Pa−1. This projection is performed by constructing an orthonormal base {v1, . . . , va−1} of

{p1, . . . , pa−1}. Next, Sa−1
xy is deflated:

Sa
xy = Sa−1

xy − va(v
′
aS

a−1
xy ) (7)

and ra and qa are the first left and right singular vectors of Sa
xy. We start this iterative

algorithm with Sxy = S1
xy and repeat this process until k components are obtained. The

choice of the number of components k will be discussed in Section 4.

In the second stage of the algorithm, the responses are regressed onto these k components.

The formal regression model under consideration is thus:

yi = α0 +A′
q,kt̃i + fi (8)
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where E(fi) = 0 and Cov(fi) = Σf . Multiple linear regression (MLR) [11] provides esti-

mates:

Âk,q = (St)
−1Sty = (R′

k,pSxRp,k)
−1R′

k,pSxy (9)

α̂0 = ȳ − Â′
q,k

¯̃t (10)

Sf = Sy − Â′
q,kStÂk,q (11)

where Sy and St stand for the empirical covariance matrix of the y- and t-variables. Note

that here MLR denotes the classical least squares regression with multiple x-variables, and

when q > 1, with multiple y-variables (also known as multivariate multiple linear regression).

Because ¯̃t = 0, the intercept α0 is thus estimated by ȳ. By plugging in t̃i = R′
k,p(xi − x̄)

in (3), we obtain estimates for the parameters in the original model (1), i.e.

B̂p,q = Rp,kÂk,q (12)

β̂0 = ȳ − B̂′q,px̄. (13)

Finally, also an estimate of Σe is provided by rewriting Sf in terms of the original parameters:

Se = Sy − B̂′SxB̂. (14)

Note that for a univariate response variable (q = 1), the parameter estimate B̂p,1 can be

rewritten as the vector β̂, whereas the estimate of the error variance Se simplifies to σ̂2
e = s2

e.

Example: Fish data

We will illustrate the SIMPLS algorithm on a low-dimensional example introduced in [14].

This data set contains n = 45 measurements of fish. For each fish, the fat concentra-

tion was measured, whereas the x-variables consist of highly multicollinear spectra at nine

wavelengths. The goal of the analysis is to model the relation between the single response

variable, fat concentration, and these spectra. The x-variables are shown in Figure 1. On

this figure we have highlighted the observations which have the most outlying spectrum. It

was reported by Naes [14] that observations 39 to 45 are outlying. We see that all of them,

except observation 42, have indeed a spectrum which deviates from the majority.

[Figure 1 about here]

It has been shown in [5] and [6] that three components are sufficient to perform the PLS

regression. So, if we carry out the SIMPLS algorithm with k = 3, we obtain the regression

diagnostic plot shown in Figure 2(a). On the horizontal axis this plot displays the Maha-

lanobis distance of a data point in the t-space, which we therefore call its score distance

SDi(k). It is defined by

SD2
i(k) = t̃′iS

−1
t t̃i. (15)



Original Research Article 6

Note that this distance SD2
i(k) depends on k, because the scores t̃i = t̃i(k) are obtained from a

PLS model with k components. On the vertical axis, the standardized concentration residuals
ri(k)

se
with ri(k) = yi − β̂0 − β̂′xi are displayed. We define outlying data points in the t-space

as those observations whose score distance exceeds the cutoff-value
√

χ2
k,0.975 (because the

squared Mahalanobis distances of normally distributed scores are χ2
k-distributed). Regression

outliers have an absolute standardized residual which exceeds
√

χ2
1,0.975 = 2.24. The SIMPLS

diagnostic plot suggests that observations 43, 44 and 45 are outlying in the t-space, whereas

observations 1 and 43 can be classified as regression outliers. Their standardized residual is

however not that large, so they are rather borderline cases.

[Figure 2 about here]

Figure 2(b) shows the robust diagnostic plot, based on the robust PLS method that will be

described in Section 3. For a precise definition of this plot, we refer to Section 5. Here, we

can clearly identify the observations with outlying spectrum (1, 12, 39, 40, 41, 43, 44 and

45). Moreover, the robust PLS method finds several regression outliers which can not be

seen on the SIMPLS plot.

3 Robustified versions of the SIMPLS algorithm

3.1 Robust covariance estimation in high dimensions

The SIMPLS method does not detect the outliers because both stages in the algorithm are

not resistant towards outlying observations. The scores t̃i are calculated based on the sam-

ple cross-covariance matrix Sxy between the x- and y-variables and the empirical covariance

matrix Sx of the x-variables, which are highly susceptible to outliers, as is the least squares

regression performed in the second stage of the algorithm. This will also be clear from the

simulation study in Section 6. In this section, we robustify the SIMPLS method by replacing

the sample cross-covariance matrix Sxy by a robust estimate of Σxy and the empirical covari-

ance matrix Sx by a robust estimate of Σx, and by performing a robust regression method

instead of MLR. Two variants of SIMPLS will be proposed, RSIMCD and RSIMPLS. These

algorithms can be applied for one or several response variables (q ≥ 1).

Our estimators are thus based on robust covariance matrices for high-dimensional data.

For this, we will use the ROBPCA method which has recently been developed [8].

Suppose we want to estimate the center and scatter of n observations zi in m dimensions,

with n < m. Because we are dealing with data sets with a very large number of variables, we

can not rely on a first class of well-known robust methods to estimate the covariance structure

of a sample. If the dimension of the data were small (m < n), we could for example apply
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the Minimum Covariance Determinant (MCD) estimator of location and scatter [18]. The

principle of the MCD method is to minimize the determinant of the sample covariance matrix

of h observations with dn/2e < h < n, for which a fast algorithm (FAST-MCD) exists [21].

The center of the zi is then estimated by the mean z̄h and their scatter by the empirical

covariance matrix Sh of the optimal h-subset (multiplied with a consistency factor). To

increase the finite-sample efficiency, a reweighting step can be added as well. An observation

receives zero weight if its robust squared distance (zi − z̄h)
′S−1

h (zi − z̄h) exceeds χ2
m,0.975.

The reweighted MCD estimator is then defined as the classical mean and covariance matrix

of those observations with weight equal to 1.

However, when m > n, the MCD estimator is not applicable anymore because the covari-

ance matrix of h < m data points is always singular. For such high-dimensional data sets,

projection pursuit algorithms have been developed [12], [7]. ROBPCA combines the two

approaches. Using projection pursuit ideas as in Donoho [3] and Stahel [23], it computes the

outlyingness of every data point and then considers the empirical covariance matrix of the h

data points with smallest outlyingness. The data are then projected onto the subspace K0

spanned by the k0 ¿ m dominant eigenvectors of this covariance matrix. Next, the MCD

method is applied to estimate the center and the scatter of the data in this low-dimensional

subspace. Finally these estimates are backtransformed to the original space and a robust

estimate of the center µ̂z of Zn,m and of its scatter Σ̂z are obtained. This scatter matrix can

be decomposed as

Σ̂z = P zLz(P z)′ (16)

with robust Z-eigenvectors P z
m,k0

and Z-eigenvalues diag(Lk0,k0). Note that the diagonal

matrix Lz contains the k0 largest eigenvalues of Σ̂z in decreasing order. Then Z-scores T z

can be obtained from T z = (Z − 1nµ̂′
z)P

z. For all details about ROBPCA, we refer to [8].

3.2 Robust PLS

3.2.1 Robust scores

To obtain robust scores we first apply ROBPCA on Zn,m = (Xn,p, Yn,q). This yields a robust

estimate of the center of Z, µ̂z = (µ̂′
x, µ̂

′
y)
′, and an estimate of its shape, Σ̂z, which can be

split into

Σ̂z =

(
Σ̂x Σ̂xy

Σ̂yx Σ̂y

)
. (17)

We estimate the cross-covariance matrix Σxy by Σ̂xy and compute the PLS weight vectors

ra as in the SIMPLS algorithm, but now starting with Σ̂xy instead of Sxy. In analogy with

(6) the x-loadings pj are defined as pj = (r′jΣ̂xrj)
−1Σ̂xrj. Then the deflation of the scatter
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matrix Σ̂a
xy is performed as in SIMPLS. In each step, the robust scores are calculated as:

tia = x̆′ira = (xi − µ̂x)
′ra (18)

where x̆i are the robustly centered observations.

Remark 1 When performing the ROBPCA method on Zn,m, we need to determine k0,

which should be a good approximation of the dimension of the space spanned by the x- and

y-variables. If k is known, we set k0 = min(k, 10) + q. The number k + q represents the

sum of the number of x-loadings that gives a good approximation of the dimension of the

x-variables, and the number of response variables. The maximal value kmax = 10 is included

to ensure a good efficiency of the FAST-MCD method in the last stage of ROBPCA, but

may be increased if enough observations are available.

When analyzing a specific data set, k0 could be chosen by looking at the eigenvalues

of the empirical covariance matrix of the h observations with the smallest outlyingness. By

doing this, one should keep in mind that it is logical that k0 is larger than the number of

components k that will be retained in the regression step.

Remark 2 When p + q < n, we can directly compute the reweighted MCD-estimator on

Zn,m. The construction of the pairs of PLS weight vectors is then closely related to an

inter-battery method of Tucker (1958). The influence functions of the resulting PLS weight

vectors, which measure the infinitesimal effect of one outlier on the estimates, appear to be

bounded [26]. This illustrates the robustness of this approach towards point contamination.

3.2.2 Robust regression

Once the scores are derived, a robust linear regression is performed. The regression model

is the same as in (8), but now based on the robust scores ti:

yi = α0 +A′
q,kti + f̆i. (19)

Note that when q = 1, well-known robust methods such as the LTS regression [18] could be

used. This approach is followed in [9]. Here, we propose two methods that can be used for

regression with one or multiple response variables. Throughout we only use the notation for

the multivariate setting, but both approaches apply as well when yi is a scalar instead of a

vector. The first multivariate regression that we discuss is the MCD regression method [22].

The second one uses additional information from the previous ROBPCA step, and hence

will be called the ROBPCA regression.
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MCD regression

The classical MLR estimates for the regression model presented in (19) can be written in

terms of the covariance Σ and the center µ of the joint variables (t, y):

µ =

(
µt

µy

)
, Σ =

(
Σt Σty

Σyt Σy

)
. (20)

If the center µ is estimated by the sample mean (t̄′, ȳ′)′ and the covariance Σ by the sample

covariance matrix of (t, y), the classical estimates satisfy equations (9)-(11) if we replace ¯̃t

in (10) by t̄. Robust regression estimates are obtained by replacing the classical mean and

covariance matrix of (t, y) by the reweighted MCD estimates of center and scatter [22]. It

is moreover recommended to reweigh these initial regression estimates in order to improve

the finite-sample efficiency. Let ri(k) be the residual of the ith observation based on the

initial estimates that were calculated with k components. If Σ̂f̆ is the initial estimate for

the covariance matrix of the errors, then we define the robust distance of the residuals as:

RDi(k) = (r′i(k)Σ̂
−1

f̆
ri(k))

1/2. (21)

The weights ci(k) are computed as

ci(k) = I(RD2
i(k) ≤ χ2

q,0.975) (22)

with I the indicator function. The final regression estimates are then calculated as in classical

MLR, but only based on those observations with weight ci(k) equal to 1. The robust residual

distances RDi(k) are recomputed as in (21) and also the weights ci(k) are adapted.

Analogously to (12)-(14), robust parameters for the original model (1) are then given by:

B̂p,q = Rp,kÂk,q (23)

β̂0 = α̂0 − B̂′q,pµ̂x (24)

Σ̂e = Σ̂f̆ . (25)

The resulting method is called RSIMCD.

Remark 3 Both MCD and ROBPCA assume that the data set contains at least h good

observations. We will therefore use the same value for h in the two steps of our algorithm,

although this is not necessary. To perform MCD on (t, y) it is required that h > k + q. With

kmax = 10 and h > dn
2
e, this condition is certainly fulfilled if dn

2
e ≥ 10 + q. This is usually

not a problem because q is very small.

The value for h influences the robustness of our estimates. It should be larger than

[n+k0+1
2

] in the ROBPCA step and larger than [n+k+q+1
2

] in the MCD regression [19]. In our

Matlab implementation, we have therefore set h = max([αn], [n+10+q+1
2

]), with α = 0.75 as

default value. It is possible to increase or decrease the value of α where (1 − α) represents

the fraction of outliers the algorithm should be able to resist.
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ROBPCA regression

The simulation study in Section 6 shows that RSIMCD is highly robust to many types of

outliers. Its computation time is mainly determined by applying ROBPCA on the (x, y)-

variables and MCD on the (t, y)-variables. Now, we introduce a second robust SIMPLS

algorithm which avoids the computation of the MCD on (t, y) by using additional information

from the ROBPCA step.

The MCD regression method starts by applying the reweighted MCD estimator on (t, y)

to obtain robust estimates of their center µ and scatter Σ. This reweighted MCD corresponds

to the mean and the covariance matrix of those observations which are considered not to be

outlying in the (k + q)-dimensional (t, y) space.

To obtain the robust scores ti, we first applied ROBPCA to the (x, y)-variables, and

obtained a k0-dimensional subspace K0 which represented these (x, y)-variables well. Because

the scores were then constructed to summarize the most important information given in the

x-variables, we might expect that outliers with respect to this k0-dimensional subspace are

often also outlying in the (t, y) space. Hence, we will estimate the center µ and the scatter

Σ of the (t, y)-variables as the weighted mean and covariance matrix of those (ti, yi) whose

corresponding (xi,yi) are not outlying to K0:

µ̂ =

(
µ̂t

µ̂y

)
=

n∑
i=1

wi

(
ti

yi

)
/(

n∑
i=1

wi) (26)

Σ̂ =

(
Σ̂t Σ̂ty

Σ̂yt Σ̂y

)
=

n∑
i=1

wi

(
ti

yi

) (
t′i y′i

)
/(

n∑
i=1

wi − 1) (27)

with wi = 1 if observation i is not identified as an outlier by applying ROBPCA on (x, y),

and wi = 0 otherwise.

The question remains how these weights wi are determined. When we apply ROBPCA,

we can identify two types of outliers: those who are outlying within K0, and those who

are lying far from K0 (see [8] for a graphical sketch). The first type of outliers can be

easily identified as those observations whose robust distance Di(k0) =
√

(tz
i )
′(Lz)−1tz

i exceeds√
χ2

k0,0.975. Here Lz is defined as in (16) with Z = (X,Y ).

To determine the second type of outliers, we consider for each data point its orthogonal

distance ODi = ‖(zi− µ̂z)−P ztz
i ‖ to the subspace K0. The distribution of these orthogonal

distances are difficult to determine exactly, but motivated by the central limit theorem, it

appears that the squared orthogonal distances are roughly normally distributed. Hence, we

estimate their center and variance with the univariate MCD, yielding µ̂od2 and σ̂2
od2 . We then

set wi = 0 if

ODi >
√

µ̂od2 + σ̂od2z0.975, (28)



Original Research Article 11

with z0.975 = Φ−1(0.975), the 97.5% quantile of the Gaussian distribution. Another approx-

imation is explained in [8]. One can of course also plot the orthogonal distances to see

whether some of them are much larger than the others. We recommend this last approach

when interaction is possible in the analysis of a particular data set.

Having identified the observations with weight 1, we thus compute µ̂ and Σ̂ from (26)

and (27). Then, we proceed as in the MCD regression method. We plug these estimates

in (9) to (11), compute residual distances as in (21) and perform a reweighted MLR. This

reweighting step has the advantage that it might again include observations with wi = 0

which are not regression outliers. We will refer to this algorithm as the RSIMPLS method.

Remark 4 Both proposed robust PLS algorithms have several equivariance properties. The

ROBPCA method is orthogonally equivariant, which means that orthogonal transformations

of the data (rotations, reflections) transform the loadings appropriately and leave the scores

unchanged. Consequently, it can easily be derived that RSIMCD and RSIMPLS are equiv-

ariant for translations and orthogonal transformations in x and y. More precisely, let u ∈ Rp,

v ∈ Rq, C any p-dimensional orthogonal matrix and D any q-dimensional orthogonal ma-

trix. If (β̂0, B̂) denotes the estimates by running RSIMCD or RSIMPLS on the original data

(xi, yi), it holds that:

B̂(Cxi + u, Dyi + v) = CB̂D′

β̂0(Cxi + u, Dyi + v) = Dβ̂0 + v −DB̂′C ′u.

Remark 5 Instead of using hard-rejection rules for defining outliers, we could also apply

continuous weights between 0 and 1. But this introduces additional choices (weight functions,

cut-off values) and the results are not necessarily improved. For a more detailed discussion,

see [9].

Remark 6 We have also developed a robust PLS1 algorithm following the approach de-

veloped in [5] but by replacing the Stahel-Donoho estimator with the ROBPCA covariance

matrix. However, the results were in general not better than those obtained with RSIMPLS

or RSIMCD. Hence we prefer RSIMPLS because it can also be applied when q ≥ 1.

3.3 Comparison

In Section 6, we present the results of a thorough simulation study where we compare

the performance of these two different robust methods. These simulations indicate that

RSIMCD and RSIMPLS are very comparable, but if we compare the mean CPU-time in

seconds computed on a Pentium IV with 1.60 GHz (see Table 1) over five runs for different

situations, we see that RSIMPLS is roughly twice as fast as RSIMCD. This is explained by
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the fact that we apply FAST-MCD in the second stage of RSIMCD. Hence, in the following

sections, we will mainly concentrate on RSIMPLS.

[Table 1 about here]

4 Model Calibration and Validation

4.1 Selecting the number of components

A very important issue in building the PLS model is the choice of the optimal number of

components kopt. The most common methods use a test set or cross-validation (CV). A test

set should be independent from the training set which is used to estimate the regression

parameters in the model, but should still be representative of the population. Let nT denote

the total number of observations in the test set. For each k, the root mean squared error

RMSEk for this test set can be computed as:

RMSEk =

√√√√ 1

nT q

nT∑
i=1

q∑
j=1

(yij − ŷij(k))2. (29)

Here, the predicted values ŷij(k) of observation i in the test set are based on the parameter

estimates that are obtained from the training set using a PLS method with k components.

One then chooses kopt as the k-value which gives the smallest or a sufficiently small value for

RMSEk.

This RMSEk statistic can however attain unreliable values if the test set contains outliers,

even if the fitted values are based on a robust PLS algorithm. Such outlying observations

increase the RMSEk because they fit the model badly. Consequently, our decision about

kopt might be wrong. Therefore, we propose to remove the outliers from the test set before

computing RMSEk. Formally, let ri(k) be the residual for the ith observation in the test

set and ci(k) = I(r′i(k)Σ̂
−1
e ri(k) < χ2

q,0.975). The weight ci(k) thus tells whether or not the ith

observation is outlying with respect to the PLS model with k components. Then, we select

the test data points which are not outlying in any of the models by computing ci = mink ci(k).

Let Gt denote the set of points for which ci = 1, and let nt be its size: |Gt| = nt. Finally,

for each k, we define the robust RMSEk value as:

R-RMSEk =

√√√√ 1

ntq

∑
i∈Gt

q∑
j=1

(yij − ŷij(k))2. (30)

This approach is fast because we only need to run the PLS algorithm once for each k. But

an independent test set is only exceptionally available. This can be solved by splitting the
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original data into a training and a test set. However, the data sets we consider generally

have a limited number of observations and it is preferable that the number of observations

in the training step is at least 6 to 10 times the number of variables. That is why we

concentrate on the cross-validated RMSEk, which will be denoted by RMSECVk [24], [9].

Usually, the 1-fold or leave-one-sample out statistic is obtained as in (29) but now the index

i runs over the set of all the observations, and the predicted values ŷij(k) are based on the

PLS estimates obtained by removing the ith observation from the data set. The optimal

number of components is then again taken as the value kopt for which RMSECVk is minimal

or sufficiently small.

However, as we have argued for RMSEk, also the RMSECVk statistic is vulnerable to

outliers, so we also remove an outlying observation. Let B̂−i, β̂0,−i and Σ̂e,−i denote the

parameter estimates based on the data set without the ith observation, r−i(k) = yi− β̂0,−i−
B̂′−ixi the ith cross-validated residual and RD2

−i(k) = r′−i(k)Σ̂
−1
e,−ir−i(k) the squared cross-

validated residual distance as in (21). Then analogously to (22) the cross-validated weight

assigned to the ith observation is defined as

c−i(k) = I(RD2
−i(k) < χ2

q,0.975).

If c−i(k) = 0, observation (xi, yi) is recognized as a regression outlier in the PLS model with

k components. Several PLS models are constructed for k = 1, . . . , ktot components with

ktot the total or maximal number of components under consideration. Because we want to

compare these ktot different models, we should evaluate their predictive power on the same

set of observations. Hence, we could eliminate those observations which are outlying in any

of the models by defining for each observation

c−i = min
k

c−i(k). (31)

Let Gc denote the subset of observations for which c−i = 1 with |Gc| = nc, then an obser-

vation belongs to the set Gc when it is observed as a regular sample in each of the ktot PLS

models. For each k, we then define the robust RMSECVk value as:

R-RMSECVk =

√√√√ 1

ncq

∑
i∈Gc

q∑
j=1

(yij − ŷ−ij(k))2 (32)

with the cross-validated fitted value ŷ−i(k) = β̂0,−i + B̂′−ixi. This approach has the advantage

that any suspicious observation is discarded in the R-RMSECVk statistic. It is also followed

in [17] to construct robust stepwise regression by means of a bounded-influence estimator

for prediction. On the other hand, when the number of observations is small, increasing ktot

can lead to sets Gc for which the number of observations nc is small compared to the total
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number of observations n. Let us e.g. consider the Fish data set. When we choose ktot = 5,

nc = 30 (out of n = 45), but with ktot = 9, nc = 23, which is only half of the observations.

To avoid such small calibration sets, we alternatively define

c−i = median
k

c−i(k). (33)

With this definition, only those data points that are outlying with respect to most of the PLS

models under consideration are removed. Note that when k is even, we take the low-median

of the c−i,k in order to obtain a weight c−i which is always exactly zero or one. For the Fish

data set, we then obtain nc = 34 when ktot = 9. Figure 3 displays the R-RMSECV curve

for the Fish data with the two different weight functions. We see that both curves do not

differ very much, and they both indicate to select three components in the regression model,

which is similar to the conclusion of the analysis in [5] and [6]. We also superimposed the

R-RMSECV curves for the SIMPLS algorithm based on the same subsets Gc of observations

as RSIMPLS and again conclude that three components are sufficient.

[Figure 3 about here]

The drawback of cross-validation is its computation time, because for each k the PLS

algorithm has to be run n times. To speed up the computations, we therefore fix k0, the

number of principal components that are selected in ROBPCA to obtain the robust center µ̂z

and scatter Σ̂z in (17). If we then increase k, we only need to compute one extra component

by deflating Sa
xy once more as explained in (7). Fixing k0 has the additional advantage

that the weights wi that are needed in the ROBPCA regression do not change with k. To

determine k0, we first compute ktot ≤ min{p, kmax = 10} that will be used as a maximal value

for k in the regression. The total number of parameters to be estimated equals kq for the

slope matrix Â, q for the intercept α̂0 and q(q − 1)/2 (or 1 when q = 1) for Σ̂e. To avoid

overfitting, we then require that

ktotq + q +
q(q − 1)

2
< h (34)

where h stands for the size of the subset that is used in the ROBPCA, or MCD regression,

and which should be a lower bound for the number of regular observations out of n. Note

that if q = 1, we have only one scale estimate σ̂e, hence we require that

ktot + 2 < h.

Having determined ktot, we then set k0 = ktot +q. For the Fish data, this implies that ktot = 9

and k0 = 10.
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Remark 7 In [9], also a robust R2
k value is defined to determine the optimal number of

components. For q = 1, it is defined by

R2
k = 1−

∑
i∈Gt

r2
i(k)∑

i∈Gt
(yi − ȳc)2

with ȳc =
∑

i∈Gt
yi/nt and Gt is defined as in (30) with the test set being equal to the full

data set. In the multivariate case (q > 1), this is generalized to:

R2
k = 1−

∑
i∈Gt

∑q
j=1r

2
ij(k)∑

i∈Gt

∑q
j=1(yij − ȳj)2

where ȳj =
∑

i∈Gt
yij/nt. The optimal number of components kopt is then chosen as the

smallest value k for which R2
k attains e.g. 80% or the R2

k curve becomes nearly flat. This

approach is fast because it avoids cross-validation, but merely measures the variance of the

residuals instead of the prediction error.

4.2 Estimation of Prediction Error

Once the optimal number of components kopt is chosen, we can validate our model by esti-

mating the prediction error. We therefore define R-RMSEPkopt (Robust Root Mean Squared

Error of Prediction), as in (32):

R-RMSEPkopt =

√√√√ 1

npq

∑
i∈Gp

q∑
j=1

(yij − ŷ−ij(kopt))
2 (35)

where Gp is now the subset of observations with non-zero weight c−i(kopt) in the PLS model

with kopt components, and |Gp| = np. The fitted values are obtained with k0 = kopt + q in

ROBPCA. Note that using this definition, we include all the regular observations for the

model with kopt components, which is more precise than the set Gc that is used in (32) and

which depends on ktot. Hence, in general R-RMSEPkopt will be different from R-RMSECVkopt .

For the Fish data set and RSIMPLS, we obtain R-RMSEP3 = 0.51 based on np = 33

observations. If we perform SIMPLS, and calculate the R-RMSEP3 value on the same set

of observations, we obtain 0.82, hence the robust fit yields a smaller prediction error. To

test whether this difference is significant, we applied the following bootstrap procedure. We

have drawn 150 bootstrap samples of size np = 33 from the (xi,yi) with c−i(3) = 1. For each

bootstrap sample we have refitted the model with three components, and we have computed

the R-RMSEP3 as in (35) with the set Gp being fixed during all the computations. The

standard deviation of these 150 R-RMSEP values was equal to σ̂R-RMSEP = 0.09 and can be

used as an approximation to the true standard deviation of the R-RMSEP statistic. Because

0.82 > 0.51 + 2.5 ∗ 0.09 = 0.735 we conclude that the R-RMSEP3 based on RSIMPLS is

significantly different from R-RMSEP3 obtained with SIMPLS (at the 1% level).
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5 Outlier Detection

5.1 Regression diagnostic plot

To identify the outlying observations, we will first construct a regression diagnostic plot as

in [20], [22] and [9]. Its goal is to identify outlying observations with respect to the regression

model (19). In our two robust PLS methods, we perform a regression of the q-dimensional yi

on the k-dimensional ti = ti(k) assuming k = kopt. We can distinguish three types of outliers.

These different types are represented in Figure 4(a) for the case of simple regression, so when

q = 1 and k = 1. Good leverage points lie in the direction of the fitted line or subspace, but

have outlying t-values. This is also the case for bad leverage points, that moreover do not

fit the model well. Vertical outliers are only outlying in the y-space. The latter two types of

outliers are known to be very influential for the classical least squares regression fit, because

they cause the slope to be tilted in order to accommodate the outliers.

To measure the outlyingness of a point in the t-space, we consider its robustified maha-

lanobis distance, which we now call the score distance SDi(k), defined by

SD2
i(k) = (ti − µ̂t)

′Σ̂−1
t (ti − µ̂t)

where µ̂t and Σ̂t are derived in the regression step, see e.g. (26) and (27). When we perform

SIMPLS, this score distance reduces to (15) because µ̂t̃ = 0. This score distance is put

on the horizontal axis of the regression diagnostic plot and exposes the good and the bad

leverage points. By analogy with [20], [22] and [9], leverage points are those observations

whose score distance exceeds the cut-off value
√

χ2
k,0.975. On the vertical axis, we put the

residual distance RDi,k:

RD2
i(k) = r′i(k)Σ̂

−1
e ri(k)

with ri(k) = yi− β̂0−B̂′xi being the residual of the ith observation. For univariate response

variables, this residual distance simplifies to the standardized residual RDi(k) =
ri(k)

σ̂e
. Ver-

tical outliers and bad leverage points are now observations whose residual distance exceeds√
χ2

q,0.975.

[Figure 4 about here]

If the regression parameters are well estimated, i.e. if they are not influenced by the outliers,

this diagnostic plot should thus look as in Figure 4(b) for q = 1, and as in Figure 4(c) for

q > 1. Let us look again at Figure 2(b) which shows the regression diagnostic plot of the Fish

data with RSIMPLS. On this plot we see six clear bad leverage points (1, 12, 41, 43, 44, 45),

two vertical outliers (3, 10), two good leverage points (39, 40) and three borderline cases. The

diagnostic plot from SIMPLS is however not very informative. Some bad leverage points

(44, 45) are converted into good leverage points which illustrates that the least squares

regression is tilted to accommodate the outliers.
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5.2 Score diagnostic plot

Next, similarly as in [10] and [8], we can also classify the observations with respect to the

PCA model (2). This yields the score diagnostic plot. On the horizontal axis, we place again

for each observation its score distance SDi(k). On the vertical axis, we put the orthogonal

distance of an observation to the t-space:

ODi(k) = ‖x̆i − Pp,kti‖.

This allows us again to identify three types of outliers. Bad PCA-leverage points have

outlying SDi(k) and ODi(k), good PCA-leverage points have only outlying SDi(k), whereas

orthogonal outliers have only outlying ODi(k). The latter ones are not yet visible on the

regression diagnostic plot. They have the property that they lie far from the t-space, but

they become regular observations after projection in the t-space. Hence, they will not badly

influence the computation of the regression parameters, but they might influence the load-

ings.

For the Fish data set this diagnostic plot is presented in Figure 5(a) for SIMPLS and in

Figure 5(b) for RSIMPLS. The horizontal line is computed as in (28). The outliers detected

in the regression diagnostic plot (Figure 2(b)) are all recognized as leverage points in this

score diagnostic plot. Furthermore we detect observation 42 as an orthogonal outlier. We

also detect two other orthogonal outliers (10, 28). For SIMPLS, this score diagnostic plot

(Figure 5(a)) also discovers sample 42 as an orthogonal outlier, but observations 43–45 are

classified as good leverage points.

[Figure 5 about here]

Note that the regression and the score diagnostic plot can also be combined into one

three-dimensional figure exposing (SDi(k), ODi(k), RDi(k)), see also [9].

6 Simulation Study

To compare the different algorithms, we have performed several simulations with low- and

high-dimensional data sets. For each situation, we generated 1000 data sets. First, we

consider the case without contamination. The data sets were then generated according to

the bilinear model (2) and (3), with:

T ∼ Nk(0k, Σt), with k < p,

X = TIk,p + Np(0p, 0.1Ip)

Y = TA+ Nq(0q, Iq), with A ∼ Nq(0q, Iq).
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Here, (Ik,p)i,j = 1 for i = j and 0 elsewhere. These simulation settings imply that kopt = k.

Next, we introduced different types of outliers by randomly replacing nε of the n observations

with ε = 10%. The conclusions obtained for ε = 20% contamination were similar to those

for ε = 10% and are therefore not included. If Tε, Xε and Yε denote the contaminated data,

the bad leverage regression points were constructed as:

Tε ∼ Nk(10k, Σt) (36)

Xε = TεIk,p + Np(0p, 0.1Ip) (37)

whereas the y-variables were not changed. The vertical outliers were generated with the

uncontaminated t-variables, but adjusted y-variables:

Yε = TAk,q + Nq(10q, 0.1Iq). (38)

Finally, orthogonal outliers were constructed by putting

Xε = TIk,p + Np((0k,10p−k), 0.1Ip) (39)

and taking unadjusted y-variables.

In Table 2, we have listed the different choices for n, p, q, k and Σt. In every simulation

setup, we calculated the Mean Squared Error (MSE) of the slope matrix B̂, of the intercept

β̂0 and of the covariance matrix of the residuals Σ̂e with SIMPLS, RSIMCD and RSIMPLS

using k components. We also computed the results for the PLS (NIPALS) algorithm, but

these were quite similar to the results from SIMPLS and are therefore not included. If q = 1,

we included the mean angle (denoted by mean(angle)) between the estimated slope and the

true slope in the simulation results. Note that here, we mainly focus on the parameter

estimates. In the simulation study in [4] we concentrate on the predictive performance of

RSIMPLS for varying values of k.

[Table 2 about here]

[Table 3-5 about here]

Discussion of the results

Tables 3-5 summarize the results of the different simulations. When no contamination is

present, all the estimators perform well. SIMPLS yields the lowest MSE for the slope,

except for q = 1 and high-dimensional regressors (Table 4). Here, RSIMPLS and RSIMCD

surprisingly even give better results.

When the data set is contaminated, SIMPLS clearly breaks down which can be seen from

all the MSE’s which rise considerably. The bad leverage points are very damaging for all
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the parameters in the model, whereas the intercept is mostly influenced by vertical outliers.

The orthogonal outliers are mostly influential at the low-dimensional data sets.

In contrast with SIMPLS, the values for the robust algorithms do not change very much.

In almost every setting, the differences between RSIMCD and RSIMPLS are very small.

Both robust PLS methods are thus comparable, but as mentioned in Section 3.3 we prefer

RSIMPLS because it is computationally more attractive than RSIMCD.

7 Example : Biscuit Dough Data

Finally, we apply RSIMPLS on the well-known high-dimensional Biscuit dough data [15].

The data originally contain four response variables, namely the concentration of fat, flour,

sucrose and water of 40 biscuit dough samples. In our analysis, we have removed the variable

fat because it is not very highly correlated with the other constituents, and it has a higher

variance. Because the three remaining response variables are highly correlated (see [9] for

some figures) and have variances of the same order, this data set seems appropriate for a

multivariate analysis. The aim is to predict these three biscuit constituents (q = 3) based on

the 40 NIR spectra with measurements every two nanometers, from 1200nm up to 2400nm.

We have done the same preprocessing as suggested in [7] which results in a data set of NIR

spectra in 600 dimensions. Observation 23 is known to be an outlier, but we will still consider

the data set with all 40 observations.

To decide on the numbers of components kopt we have drawn the R-RMSECV curve

with the median weight defined in (33) and with ktot = 7 derived from (34). This yields

nc = 25. Figure 6 suggests to take kopt = 3. The R-RMSECV curve for SIMPLS (based on

the same Gc as for RSIMPLS) is superimposed and reveals higher errors, but also suggests

three components.

[Figure 6 about here]

We then performed RSIMPLS with kopt = 3 and k0 = 6, and obtained the robust diagnostic

plot in Figure 7(b). Observation 21 stands out as a clear outlier with a very large robust

residual distance around 60. Observation 23 is also recognized as a bad leverage point having

the largest score distance. Further, we distinguish three bad leverage points (7, 20, 24) with

merely large score distances, and one vertical outlier (22) with a somewhat larger residual

distance. There are also some borderline cases (20, 33). With SIMPLS, we obtain the

regression diagnostic plot in Figure 7(a). The three most extreme outliers (21, 23, 7) seen

from the robust analysis, are still detected, but their distances have changed enormously.

Observation 21 now has a residual distance RD21(3) = 5.91 and the score distance SD23(3) =

4.23. Observation 23 is almost turned into a good leverage point, whereas case 7 is a
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boundary case because its residual distance is only 3.71, which does not lie very far from√
χ2

3,0.975 = 3.06.

[Figure 7 about here]

The RSIMPLS score diagnostic plot is shown in Figure 8(b). Observations 7, 20, 21, 23

and 24 are detected as bad PCA-leverage points. The score diagnostic plot for SIMPLS in

Figure 8(b) only indicates 23 as a good PCA-leverage point.

[Figure 8 about here]

The robust prediction error R-RMSEP3 = 0.53. If we compute R-RMSEP3 with the fitted

values obtained with SIMPLS and Gp as in RSIMPLS, we obtain 0.70 for the prediction error.

This shows that RSIMPLS yields a lower prediction error than SIMPLS, evaluated at the

same subset of observations. To know whether this difference is significant, we applied the

same bootstrap procedure as explained in Section 4.2, from which we derived the standard

deviation σ̂R-RMSEP = 0.12. This yield approximately a significant difference at the 15% level.

To finish this example, we illustrate that for this data set, it is worthwhile to consider

the multivariate regression model where the three y-variables are simultaneously modelled

instead of performing three univariate calibrations. First, we computed the univariate pre-

diction errors based on the multivariate estimates. So we computed R-RMSEP3 for each

response variable separately (j = 1, . . . , 3):

R-RMSEP3 =

√
1

np

∑
i∈Gp

(yij − ŷ−ij(3))2

where ŷ−ij(3) are the fitted values from the multivariate regression and Gp is the subset of

observations retained in the multivariate regression. We obtained R-RMSEP(flour) = 0.37,

R-RMSEP(sucrose) = 0.82 and R-RMSEP(water) = 0.19. Then, we have applied RSIMPLS

for the three concentrations separately. It turned out that three components were satisfactory

for every response. These three univariate regressions resulted in R-RMSEP(flour) = 0.40,

R-RMSEP(sucrose) = 0.95 and R-RMSEP(water) = 0.18. Also these latter prediction errors

are based on the same subset Gp from the multivariate approach. For flour and sucrose we

thus obtain a higher prediction accuracy with the multivariate regression, whereas only water

is slightly better fitted by its own model.

8 Conclusion

In this paper we have proposed two new robust PLSR algorithms based on the SIMPLS

algorithm. RSIMCD and RSIMPLS can be applied to low- and high-dimensional regressor
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variables, and to one or multiple response variables. First, robust scores are constructed,

and then the analysis is followed by a robust regression step. Simulations have shown that

they are resistant towards many types of contamination, whereas their performance is also

good at uncontaminated data sets. We recommend RSIMPLS because it is roughly twice

as fast as RSIMCD. A Matlab implementation of RSIMPLS is available at the web site

www.wis.kuleuven.ac.be/stat/robust.html as part of the Matlab toolbox for Robust

Calibration [27].

We have also proposed robust RMSECV curves to select the number of components, and

a robust estimate of the prediction error. Diagnostic plots are introduced to discover the

different types of outliers in the data and are illustrated on some real data sets. Also the

advantage of the multivariate approach has been illustrated.

In [4], a comparative study is made between RSIMPLS and RPCR with emphasis on

the predictive ability and the goodness-of-fit of these methods when varying the number of

components k. Currently, we are developing faster algorithms to compute the R-RMSECV

values to allow fast and robust model selection in multivariate calibration.
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ate regression 2002; submitted to Technometrics. Under revision. Available at

http://win-www.uia.ac.be/u/statis.

[23] Stahel WA. Robust Estimation: Infinitesimal Optimality and Covariance Matrix Esti-

mators, Ph.D. thesis, ETH, Zürich, 1981.
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Figure 1: The regressors of the Fish data set.
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Figure 2: Regression diagnostic plot for the Fish data set with: (a) SIMPLS; (b) RSIMPLS.
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based on (31) (dashed line and •) and for SIMPLS based on (33) (dashed line and ¨).
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Figure 4: Different types of outliers in regression: (a) scatterplot in simple regression; (b)

regression diagnostic plot for univariate response variable; (c) regression diagnostic plot for

multivariate response variables.
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Figure 5: Score diagnostic plot for the Fish data set with: (a) SIMPLS; (b) RSIMPLS.
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Figure 6: The R-RMSECV curve for the Biscuit dough data set.
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Figure 7: Regression diagnostic plot for the Biscuit dough data set with: (a) SIMPLS; (b)

RSIMPLS.
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Figure 8: Score diagnostic plot for the Biscuit dough data set with: (a) SIMPLS; (b) RSIM-

PLS.
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Table 1: The mean CPU-time in seconds over five runs of RSIMCD and RSIMPLS for several

set-ups.

q = 1 q = 5

n p k RSIMCD RSIMPLS k RSIMCD RSIMPLS

50 100 5 10.59 6.42 5 13.64 7.45

10 14.87 7.90 10 18.22 9.03

500 5 10.60 6.47 5 13.81 7.68

15 14.80 8.03 15 18.62 9.41

100 5 1 7.64 5.65 5 14.38 8.08

5 11.00 6.77 10 14.43 8.07

500 5 11.64 7.39 5 15.11 8.80

15 16.01 9.00 15 19.93 10.57
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Table 2: Summary of the simulation setup.

Table q n p k Σt Σe

3 1 100 5 2 diag(4,2) 1

4 1 50 100 5 diag(7,5,3.5,2.5,1) 1

5 5 100 10 3 diag(4,2,1) Iq

5 5 50 100 5 diag(7,5,3.5,2.5,1) Iq
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Table 3: Simulation results for low-dimensional regressors (p = 5) and one response variable

(q = 1).

mean(angle) MSE(β̂) MSE(β̂0) MSE(σ̂2
e)

Algorithm No contamination

SIMPLS 0.054 0.404 1.324 13.073

RSIMCD 0.082 0.734 1.649 4.196

RSIMPLS 0.080 0.701 1.541 6.560

10% bad leverage points

SIMPLS 1.132 60.236 19.075 7696

RSIMCD 0.076 0.645 1.645 8.400

RSIMPLS 0.077 0.684 1.823 4.888

10% vertical outliers

SIMPLS 0.124 2.072 100 8329

RSIMCD 0.073 0.613 1.661 7.802

RSIMPLS 0.075 0.654 1.776 4.815

10% orthogonal outliers

SIMPLS 0.258 5.616 1.988 67.455

RSIMCD 0.079 0.766 2.278 10.022

RSIMPLS 0.078 0.735 2.063 5.111
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Table 4: Simulation results for high-dimensional regressors (p = 100) and one response

variable (q = 1).

mean(angle) MSE(β̂) MSE(β̂0) MSE(σ̂2
e)

Algorithm No contamination

SIMPLS 0.565 2.291 2.990 7.173

RSIMCD 0.429 1.127 4.595 13.679

RSIMPLS 0.424 1.088 4.084 11.347

10% bad leverage points

SIMPLS 0.968 12.516 7.920 336

RSIMCD 0.420 1.081 4.651 15.290

RSIMPLS 0.417 1.052 4.612 10.707

10% vertical outliers

SIMPLS 1.020 14.782 56.320 165

RSIMCD 0.509 1.645 5.814 18.693

RSIMPLS 0.504 1.578 6.208 13.360

10% orthogonal outliers

SIMPLS 0.413 1.085 2.846 3.436

RSIMCD 0.417 1.060 4.464 17.374

RSIMPLS 0.414 1.039 4.333 11.877
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Table 5: Simulation results for low- and high-dimensional regressors (p = 10 or p = 100)

and five response variables (q = 5).

n = 100, p = 10 n = 50, p = 100

MSE(B̂) MSE(β̂0) MSE(Σ̂e) MSE(B̂) MSE(β̂0) MSE(Σ̂e)

Algorithm No contamination

SIMPLS 0.599 1.544 14.827 0.248 1.647 3.125

RSIMCD 0.940 1.773 12.120 0.475 3.607 4.343

RSIMPLS 0.965 1.843 11.348 0.468 3.120 3.849

10% bad leverage points

SIMPLS 18.504 5.836 1328 1.271 3.945 178

RSIMCD 0.910 1.874 12.710 0.435 3.023 4.053

RSIMPLS 0.933 1.978 11.795 0.431 3.418 3.598

10% vertical outliers

SIMPLS 3.389 103 7796 7.049 52.598 730

RSIMCD 0.921 1.889 12.735 0.441 2.931 4.144

RSIMPLS 0.945 1.973 11.843 0.437 3.252 3.682

10% orthogonal outliers

SIMPLS 4.230 2.166 34.781 0.397 2.314 13.502

RSIMCD 1.071 2.632 18.278 0.430 2.932 4.156

RSIMPLS 0.984 2.192 13.551 0.427 3.184 3.622


